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A B S T R A C T   

Climate change makes fish stocks more vulnerable to recruitment failure, and early detection of these events is 
important for an effective management response. Here, we evaluate the value of larval and juvenile surveys, and 
a thermal spawning habitat index, for predicting recruitment in two economically important gadids, walleye 
pollock (Gadus chalcogrammus) and Pacific cod (G. macrocephalus), in the Gulf of Alaska. These stocks have been 
exposed to rapid human-induced ocean warming since 2014, which has apparently contributed to anomalies in 
age structure, size at age, and other population variables (for pollock) and stock collapse (for cod). We found that 
warming results in recruitment that falls short of predictions from historical spawner-recruit relationships for 
both stocks, highlighting that climate change makes recruitment expectations based on historical experience less 
reliable. However, we also found that recruitment could be successfully predicted with surveys of early-life 
stages. Using Bayesian regression, we found that juvenile trawl survey data for pollock predicts recruitment to 
age-1 (as estimated by a stock assessment model), while prediction from larval surveys was less successful. Beach 
seine estimates of juvenile abundance also predicted pollock recruitment, a surprising result for a species that is 
typically sampled in offshore habitats. The spawning habitat index and beach seine survey both predicted cod 
recruitment to age-3 as estimated by the stock assessment model. We did not find a predictive relationship 
between cod larval abundance and recruitment. However, residuals from the larval model showed low-frequency 
variability, suggesting nonstationarity (time-dependence) in the predictive relationship. Dynamic Factor Analysis 
(DFA) models summarizing information across multiple data sets showed reasonable predictive value for both 
species (Bayesian R2 ≈ 0.4 for log recruitment), and they also allowed recruitment prediction for years with 
missing observations in some data sets. We conclude that surveying multiple early life stages may be the most 
useful approach for predicting gadid recruitment.   

1. Introduction 

The signal of human-induced climate change is emerging from the 
envelope of natural variability for many ocean ecosystems (Henson 
et al., 2017; Laufkötter et al., 2020; Silvy et al., 2020), placing fish stocks 
around the world under unprecedented climate conditions. Expected 

outcomes include an increase in the rate of events such as stock collapse 
(Pershing et al., 2019). Critically, these climate change outcomes may be 
“surprising” in that they are poorly constrained by ecological under
standing based on historical experience. In this context, “historical” 
experience is derived from a backward-looking perspective on 
ecosystem and population variability, based on previous observations, 
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which contrasts with a forward-looking perspective that assumes that 
current trends will continue (Dietze et al., 2018; Pershing et al., 2019). 
As anthropogenic climate extremes place ecosystems around the world 
under conditions that are outside the envelope of historical variability, 
ecological understanding based on historical conditions is increasingly 
less relevant, and tools are needed for rapidly assessing ecosystem states 
that have never been observed before (Williams and Jackson, 2007; 
Wolkovich et al., 2014; Dietze et al., 2018). One important tool for 
avoiding collapse in climate-stressed stocks is early recognition of 
changing population dynamics to allow rapid adaptation by managers 
(Pershing et al., 2015). Changes to recruitment (the production of young 
fish to sustain the stock) are particularly important for early detection of 
incipient population changes. Fishing truncates the age structure of 
exploited stocks (Barnett et al., 2017), which has the pernicious effect of 
increasing recruitment variance and sensitivity to climate perturbations 
while also making stock biomass more dependent on regular recruit
ment events (Anderson et al., 2008; Shelton and Mangel, 2011). Pre
dicting recruitment (i.e., year class strength) is therefore of particular 
interest for the management of climate-stressed fisheries. 

Recruitment and other population parameters are often estimated 
with age-structured stock assessment models, which are advantageous 
for combining information from different data sources. However, out-of- 
sample prediction of recruitment by these models is often very low 
(Giron-Nava et al., 2020). Recruitment estimates are therefore typically 
made retrospectively, after cohorts have appeared in the fishery or 
fishery-independent surveys. A lag therefore exists between the timing 
when year class strength is established, which typically occurs at the 
first year of life (age-0; Houde, 2008), and recognition of year class 
strength by the model used for estimating management reference points. 
Observations of cohorts at age-0 (as eggs, larvae, or juveniles) might 
therefore be useful for providing earlier indications of future adult 
recruitment. However, extreme levels of sampling variance and highly 
variable early life mortality have often precluded effective prediction of 
recruitment by early life stage surveys (Stige et al., 2013). 

Here, we evaluate the ability of larval and juvenile abundance sur
veys and a temperature-based index of spawning habitat suitability to 
predict recruitment as estimated by stock assessment models for two 
exploited gadids in the Gulf of Alaska: walleye pollock (Gadus chalcog
rammus, hereafter “pollock”) and Pacific cod (G. macrocephalus, here
after “cod”). These populations have been the subject of early life stage 
monitoring efforts for forty years and so provide a data-rich model 
system for examining this question. Early detection of recruitment 
variability for these stocks has become more important since a series of 
extreme ocean temperature anomalies in the Gulf of Alaska during 
2014–2019, which have been formally attributed to human-induced 
causes (Walsh et al., 2018b; Laufkötter et al., 2020). The transition 
from conditions consistent with natural variability to extreme ocean 
temperatures that can only be explained with human influence (e.g., 
greenhouse gas emissions) is associated with an increased likelihood of 
recruitment failure for both species (Litzow et al., 2021). This anthro
pogenic warming event apparently contributed to a number of anoma
lous responses by the pollock stock, including negative weight-at-age 
anomalies, early maturation and reduced natural mortality, and strongly 
contrasting abundance trends in bottom trawl and acoustic midwater 
surveys (Dorn et al., 2020). The warming event also resulted in collapse 
of the cod stock, apparently due to the impacts of early life stage thermal 
stress combined with increased metabolic demands and insufficient prey 
resources for older cohorts (Barbeaux et al., 2020b), though synergistic 
fishing effects cannot be ruled out (Harley et al., 2006; Hsieh et al., 
2006). 

There is a long history of research on the relationship between early 
life stage abundance and recruitment to the pollock stock. In particular, 
Bailey et al. (2012) and Stige et al. (2013) showed that estimates of 
larval abundance alone were poor predictors of subsequent recruitment. 
However, these authors also found that the predictive value for these 
time series was nonstationary (i.e., time-varying). This nonstationarity 

appears to result from changing control of pollock recruitment over 
time. In the 1980 s, larval mortality was the primary driver of recruit
ment variability (Bailey, 2000), but in the 1990 s predation on juveniles 
became a more important limiting factor for recruitment, and the pre
dictive value of larval abundance degraded (Ciannelli et al., 2004, 
2005). More recently, abundance of age-0 pollock has been shown to be 
an early indicator of year class strength in this stock (Wilson and Laman, 
2021). 

Less work has focused on the predictive value of early life stage 
observations for cod recruitment. Laurel et al. (2016) showed that beach 
seine catches of age-0 cod could predict age-1 abundance at the same 
sites in the following year. Laurel and Rogers (2020) showed that an 
index of spawning habitat suitability (depth-averaged temperature 
conditioned on laboratory estimates of temperature-dependent egg 
survival) could predict larval cod abundance, juvenile cod abundance 
from seines at two long-term sampling sites at Kodiak Island, and 
recruitment estimates from the stock assessment model. This analysis 
did not consider the value of larval abundance or juvenile abundance 
from seines for predicting modeled recruitment, and it also did not 
consider an additional set of seines over a wider area of the western Gulf 
of Alaska (Litzow et al., 2021). Additionally, post-2014 climate anom
alies in the Gulf of Alaska may have sharply reduced habitat suitability 
for larval cod due to changes in timing of the spring bloom and increased 
metabolic demands of larvae, which may have further disrupted pre
dictive relationships between larval abundance and cod recruitment 
(Laurel et al., 2021). 

Thus while strong climate forcing on these stocks increases the need 
for better recruitment prediction, the magnitude of climate perturba
tions also increases the possibility of changing control points for cohort 
strength, increasing the chance of nonstationary predictions from early 
life stage observations. Re-evaluation of the predictive value of early life 
stage observations is therefore needed to establish whether and how 
these data can be used quantitatively in stock assessments or manage
ment strategy evaluations, or qualitatively to inform management 
advice (Dorn and Zador, 2020). 

The goal of the current study is to re-assess the value of early life 
stage observations for predicting pollock and cod recruitment. Our 
analysis puts post-2014 climate extremes in the context of four decades 
of observations, and it also draws on recent advances in dimensional 
reduction techniques for time series data to combine information from 
multiple data sources for individual stocks. Our specific objectives are 
to: (1) use Bayesian models to produce probabilistic assessments of the 
value of individual early life stage time series for predicting recruitment 
estimates from stock assessment models, (2) assess predictive value for 
Dynamic Factor Analysis (DFA) models that combine information across 
multiple time series, and (3) use time series of model residuals to explore 
possible nonstationarity in predictions. We also examine the effect that 
extreme climate anomalies have on predictions generated from histori
cal stock-recruit relationships, as a way of assessing the vulnerability of 
expectations based on historical norms during unprecedented climate 
conditions (Pershing et al., 2019). 

2. Methods 

2.1. Data sources 

We used four sources of biological information: an index of spawning 
habitat suitability for cod based on temperature-dependent egg survival 
at depth (Laurel and Rogers, 2020), a May-June ichthyoplankton survey 
that samples larvae of both species, July-August beach seines that 
sample juveniles of both species at fixed site locations, and an 
August-September pelagic trawl survey that samples juvenile pollock. 

The index of spawning habitat suitability for cod was constructed by 
combining observational data on temperatures at depth with laboratory- 
derived rates of hatch success of cod eggs at different temperatures (see 
Laurel and Rogers, 2020). Specifically, measured temperatures at GAK1, 

M.A. Litzow et al.                                                                                                                                                                                                                               



Fisheries Research 249 (2022) 106250

3

a long-term monitoring station maintained by the University of Alaska 
(http://research.cfos.uaf.edu/gak1/; Fig. 1a), were used to estimate 
hatch success across depths, seasons, and years. An annual index was 
developed by taking the average estimated hatch success rate across 
depths of 100–250 m from January to April based on reported spawning 
dynamics for cod in Alaska (Stark, 2007; Neidetcher et al., 2014). 

Fish larvae were sampled during 1981–2019 (missing years in 1984, 
1986, 2012, 2014, 2016, and 2018), and juvenile pollock trawl surveys 
were conducted during 2000–2001 and odd years from 2003 to 2019. 
Larvae were sampled over a fixed area (Fig. 1a) during mid-May — early 
June using oblique tows from 10 m off bottom (or 100 m depth 
maximum) to the surface using a 60-cm diameter bongo net (333 or 
505 µm mesh). Calibrated flowmeters in each net estimated the volume 
filtered, and catch was standardized as number 10 m− 2 area of sea 
surface sampled. Finally, time series indices of larval abundance were 
calculated as the area-weighted mean catch to account for spatial dif
ferences in sampling effort among years (Doyle et al., 2009). 

Beach seines were conducted with a negatively buoyant, 36-m long 
seine, with wings 1 m deep at the ends of the net and 2.25 m deep in the 
middle, 13 mm mesh in the wings and 5 mm delta mesh in the cod end 
bag. Seine wings were attached to 25 m ropes for deployment and 
retrieval from shore, and nominal sampling area was ≈ 900 m2 of bot
tom habitat. Sampling was conducted during July and August at 95 sites 
in 15 bays (Fig. 1a), with each site sampled 1–4 times per year. The two 
easternmost bays were sampled each year during 2006–2020, with at 
least two sampling visits per year (n = 880 sets). The remainder of bays 
were sampled during 2018–2020 (n = 265 sets). Because beach seine 
effort varied spatially and seasonally in different years, we used model- 
based estimates of annual abundance for each species as our time series 

for subsequent analyses. These estimates were the predicted annual 
catch per unit effort (fish / set) from a Bayesian regression model that 
controlled for the day of year of each sampling event (as a smoothed 
non-parametric term to allow for nonlinear seasonal changes in abun
dance), and nested site and bay group-level (random) effects (to account 
for differences in abundance among sites and bays that are sampled 
unequally across years). The Bayesian formulation has the benefit of 
providing full uncertainty estimates of model coefficients and predicted 
values (Fang et al., 2019). Details on Bayesian model fitting are given in 
Section 2.2, and further details are in Litzow et al. (2021). 

Trawl surveys for age-0 pollock were conducted in a fixed area 
(Fig. 1a) in August-September. Samples were collected using a midwater 
trawl fished with 1.5 × 2.1 m steel V-doors (566 kg each) and equipped 
with a 3 mm cod end liner. The trawl was fished obliquely through the 
water column at a ship speed of 4.6–5.6 km hr− 1 and a wire retrieval 
rate of 10 m min–1. A time series of age-0 pollock abundance was 
developed by calculating an area-weighted mean catch m− 2 in each 
year, using the same methodology as for the larval index (Rogers et al., 
2021). 

Stock assessment model estimates of recruitment at age-0 are from 
the authors’ preferred models from 2020 stock assessment reports. 
These stock assessment models are age-structured models that estimate 
a number of population parameters using a variety of data inputs; 
models are fit in Stock Synthesis and AD Model Builder software and 
form the basis for setting management reference points and fishing 
quotas (details in Barbeaux et al., 2020a, Dorn et al., 2020). Recruitment 
estimates are lagged from estimated age-1 abundance for pollock, and 
age-3 abundance for cod. This difference in the age at which recruitment 
is estimated reflects differences in data availability for the two models: 
age-1 pollock are sampled by acoustic trawl surveys, but the earliest 
life-stage data for the cod model are provided when cod begin to appear 
in bottom trawl sampling gear at age-3. Our analysis only included 
recruitment estimates that overlapped with observational time series 
and were supported by data on year class strength within the model 
(year classes 1981–2019 for pollock, 1981–2016 for cod). 

Our historical SST data come from the NOAA Extended Recon
structed SST data set, version 5 (ERSSTv5; Huang et al., 2017). We 
calculated annual mean SST values for the western Gulf of Alaska (the 
area of our pollock and cod sampling) for the months of January – June 
(corresponding the spawning, larval, and early juvenile phases for the 
two species). Projected future SST anomalies were calculated for the 
Gulf of Alaska from downscaled climate model outputs for five CMIP5 
models (Climate Model Intercomparison Project, Phase 5) with good 
predictive skill for Alaska (Walsh et al., 2018b, 2018a). These anomalies 
are from combined time series of model hindcasts (1987–2005) and 
projections under Representative Concentration Pathway (RCP) 8.5 
(Schwalm et al., 2020). 

2.2. Analysis 

We began our analysis by evaluating the degree to which extreme 
climate anomalies resulted in error for recruitment predictions based on 
historical norms. We simulated recruitment predictions for each stock 
on a rolling window basis using the following approach. We fit a Ricker 
model to the first 30 years of the estimated recruitment and spawning 
stock biomass time series, and we then used that Ricker model to predict 
recruitment in the following year (i.e., recruitment predicted from 
spawning stock biomass in year 31). We also calculated the magnitude of 
the SST anomaly in the prediction year, based on the mean and standard 
deviation of SST values for the same 30 year period. The recruitment 
prediction error was recorded (i.e., ln[predicted recruitment for year 
31] - ln[actual modeled recruitment estimate for year 31]), as was the 
SST anomaly. The window was then advanced one year (i.e., recruit
ment given spawning stock biomass in year 32 was predicted from a 
Ricker model fit to the first 31 years of data, and the SST anomaly was 
calculated in year 32 relative to the first 31 years), and this procedure 

Fig. 1. Study system. (a) Study site. (b) Age-0 field data and stock assessment 
model recruitment estimates for each species. 
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was repeated until the end of the stock assessment model time series was 
reached. Note that our goal in this analysis was to evaluate the impact of 
warming on predictions that might be made from historical spawner- 
recruit relationships, rather than assessing the ability of stock assess
ment models to predict out-of-sample recruitment (Giron-Nava et al., 
2020). We used the rolling window approach because it explicitly 
models a situation where historical understanding (based on data from 
the rolling window) is confronted with new information (from the up
date year). Recruitment errors were scaled as z-scores for each species 
(difference from the mean value, divided by the standard deviation), and 
the relationship between SST anomalies and recruitment prediction 
error, for both species combined, was estimated with Bayesian regres
sion, using thin plate splines to model a non-parametric relationship 
(Wood, 2003). An initial model that fit the SST – recruitment prediction 
error relationship separately to each species showed that there was no 
substantive difference in effects between species. This model with 
species-specific effects produced worse out-of-sample prediction (i.e., a 
higher Leave One Out Information Criterion score; Vehtari et al., 2017), 
and was therefore rejected in favor of a model that pooled results across 
species. 

After the relationship between SST anomalies and recruitment pre
diction error was estimated, we summarized hindcasted and projected 
probabilities of extreme SST anomalies (> 2 SD and > 3 SD) for annual 
Gulf of Alaska SST during 1987–2046. This analysis used a combination 
of historical simulations (1987–2005) and RCP8.5 projections 
(2006–2046) from CMIP5 outputs. For each year, we estimated the 
probability of extreme events as the proportion of the five models that 
projected anomalies > 2 SD and > 3 SD (Walsh et al., 2018b). The 
resulting time series were smoothed with 11-year rolling means to 
isolate the trend from the noise of interannual variability. 

All time series of observed abundance and modeled recruitment 
strength were normalized with natural log transformations prior to 
analysis. All time series (including the habitat index) were scaled as z- 
scores to aid comparison across data types. Normalized, scaled data are 
plotted for each species in Fig. 1b,c. 

We used Dynamic Factor Analysis (DFA; Zuur et al., 2003) to sum
marize variability across the observational time series for each species 
(larval surveys, seines, and trawl surveys for pollock; habitat index, 
larval surveys, and seines for cod). DFA is a dimensional reduction 
technique developed specifically for time series analysis which estimates 
variability in an unobserved (or “latent”) shared trend, based on load
ings for individual time series and a variance-covariance matrix. We fit 
DFA models in the MARSS package version 3.11.3 (Holmes et al., 2012) 
in R version 4.0.4 (R Core Team, 2021). We fit two different 
variance-covariance structures for each species (same variance and no 
covariance or different variance and no covariance), with the best model 
selected based on the Akaike Information Criterion. Two other model 
structures (same variances and same covariance, different variances and 
covariances) returned models with loadings of 0 and were dropped from 
consideration. DFA models were fit to that part of the time series that 
included at least one observation in every year (1987–2020 for pollock, 
1994–2020 for cod). 

When evaluating the ability of different early-life data sets to predict 
recruitment, we no longer used the rolling window approach but simply 
used all of the data in hand. This is because we were no longer interested 
in challenges to historical understanding, but instead were interested in 
the ability of early-life data to predict eventual recruitment. We 
estimated predictive value for each observational time series, and for the 
shared trend from DFA models, through comparison with stock 
assessment model recruitment estimates using Bayesian linear 
regression models fit in Stan 2.21.0 and the brms package in R 
(Carpenter et al., 2017; Bürkner, 2017). All estimated parameters had a 
potential scale reduction factor (Ȓ) less than 1.05, an effective sample 
size of at least 1000, and no divergent transitions were observed. We 
also assessed chain convergence and model fits using graphical methods 
(e.g., trace-plots) and posterior predictive checks (Gabry et al., 2019). 

Different years were covered by each time series (Fig. 1b,c), so formal 
model comparison (e.g., by the Leave One Out Information Criterion) 
was not feasible (i.e., different response variable sets were available for 
each year). Rather than model comparison, we evaluate the predictive 
value of different time series for stock assessment model recruitment 
estimates by comparing regression coefficients and Bayes R2 values, 
which are calculated from the model posteriors as 

R2 =
Varµ

Varµ + Varres
,

where Varµ is the variance of modelled predictive means, and Varres is 
the modelled residual variance (Gelman et al., 2019). While we recog
nize that these metrics do not support as rigorous a comparison as formal 
model selection techniques, we judged that this approach was superior 
as it used all of the information available for each time series. 

Finally, we conducted an exploratory analysis of potential non
stationarity in predictive value for models fit to data from each obser
vational stage (i.e., spawning habitat suitability, larval and juvenile 
abundance) by plotting residual time series from model posteriors (with 
95% CIs). Temporal trends in model residuals are an important indica
tion that a model assuming stationary (time-independent) relationships 
is inadequate to a situation where ecological relationships (in this case, 
the relationship between early-life data and eventual recruitment) are 
changing over time. Conversely, independently distributed residuals 
(without temporal dependence) are an indication that the assumption of 
stationarity is valid (Litzow et al., 2018; Rollinson et al., 2021). To 
examine potential time-dependent errors in predictions we fit GAMs and 
associated confidence intervals (assuming independence among years) 
to the time series of residual means. Periods when the confidence in
terval for the GAM fits did not include 0 were judged to reflect possible 
changes in prediction value. All data and code necessary for reproducing 
our results are posted in the “predict-R” repository (https://github. 
com/mikelitzow/predict-R; permanent repository on Zenodo at 
https://doi.org/10.5281/zenodo.5908319). 

3. Results 

Strong climate change events (as indexed by SST anomalies) were 
associated with failure of recruitment predictions generated from his
torical spawner-recruit relationships (Bayes R2 = 0.42, 95% CI =
0.16–0.58). SST anomalies > 2 SD were associated with the largest 
prediction errors (actual recruitment more than 1 SD less than pre
dicted; Fig. 2a). Downscaled CMIP5 models indicate that the probability 
of these extreme temperatures associated with unpleasant “surprises” 
(low recruitment events poorly constrained by historical spawner- 
recruit relationships) is rapidly increasing (e.g., probability of anoma
lies > 2 SD ≈ 0.4 by 2030, ≈ 0.6 by 2040). The annual probability of 
more extreme anomalies (> 3 SD) is projected to reach ≈ 0.2 by 2040 
(Fig. 2b). 

For pollock, the larval abundance, age-0 seine abundance, and age- 
0 trawl abundance time series were all informative for estimating the 
shared trend in recruitment variability, as indicated by positive DFA 
loadings with 95% CI that did not include 0 (Fig. 3a). The DFA-estimated 
trend in pollock recruitment strength showed a run of negative values 
during the 2014–2016 heatwave years (Fig. 3b). For cod, all three time 
series also showed positive loadings that could be distinguished from 
0 in the DFA model, with some indication of stronger loadings for the 
earliest time series (habitat index and larval abundance) and a weaker 
loading for the later time series (age-0 seine; Fig. 3c). The shared trend 
in the cod DFA model indicated a step decline in recruitment since the 
onset of temperature extremes in 2014 (Fig. 3d). 

Bayesian regression coefficients and Bayes R2 values indicated a 
gradient of predictive value in pollock time series, with weaker pre
dictions based on larval abundance, intermediate predictions for age- 
0 seines, and very strong predictive value for age-0 trawls (Fig. 4). 
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The DFA trend for pollock showed predictive value intermediate be
tween that of larval abundance and age-0 trawls, and regression co
efficients for all four time series could be distinguished from 0 (Fig. 4). 
Residual time series for the four pollock models showed a declining 
trend, but this trend could be distinguished from 0 only for the larval 
time series (Fig. 5). The final four years of the time series (2016–2019) 
included the three lowest residuals from the larval model, and the 

magnitude of these residuals was much greater than that of persistently 
positive (negative) residuals during the 1980 s (1990 s). 

Beach seines showed the strongest predictive value for cod recruit
ment, with markedly weaker predictive value for the habitat index, and 
a regression coefficient for larval abundance that could not be distin
guished from 0 (Fig. 6). The DFA trend for cod was intermediate in 
predictive value. Residual time series for the larval prediction model 

Fig. 2. Climate change and prediction error for recruitment at age-0. (a) Prediction error for both species combined as a function of annual SST anomaly (posterior 
means with 80 / 90 / 95% CI). (b) Probability of > 2 SD and > 3 SD SST anomalies (relative to 1987–2016 base period) from downscaled CMIP5 models under 
emissions scenario RCP8.5: mean annual probabilities for five models, smoothed with 11-year running mean (redrawn from data in Walsh et al., 2018b). 

Fig. 3. Loadings and shared trend from DFA models of recruitment variability. Time series loadings and shared trend for (a-b) pollock, (c-d) cod.  
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showed a transition from persistently positive values in the 1980 s to 
persistently negative values in the 1990 s through the mid-2000 s, fol
lowed by residuals that were not persistently negative or positive during 
2007–2016 (Fig. 7). Residuals from the cod DFA model showed some 
evidence of a transition from negative to positive values across the 
1994–2016 time series (Fig. 7). 

4. Discussion 

All three early life stage time series showed value for predicting 
recruitment to the pollock stock, and two of three time series showed 
value for predicting recruitment to the cod stock, as judged by 95% 
credible intervals for regression coefficient estimates that did not 
include 0. The exception was prediction of cod recruitment from the 

larval survey, and this was also the time series that showed the strongest 
indication of a nonstationary relationship with recruitment. This result 
indicates that the relationship between larval abundance and cod 
recruitment has changed over time. A similar trend from negative to 
positive residuals was observed for predictions from the spawning 
habitat suitability index, indicating coherence in this result for early-life 
cod (i.e., similar nonstationary trends in prediction residuals for both 
time series). And, since the habitat and larval time series load heavily on 
the DFA trend for cod (Fig. 3), a similar trend in prediction residuals was 
observed for the DFA trend (Fig. 7). Accounting for this changing rela
tionship might provide an avenue for improving recruitment prediction, 
and this nonstationarity also suggests that research on changing controls 
of recruitment may improve inference about evolving controls of pop
ulation dynamics for this stock (Rollinson et al., 2021). We also found 

Fig. 4. Predicting pollock model recruitment estimates from age-0 field observations. Bayesian regression (80 / 90 / 95% CI) of model estimates on (a) larval 
abundance, (b) juvenile seine abundance, (c) juvenile trawl abundance, (d) DFA for all three time series. (e) Estimated regression coefficients (95% CI) for each 
model, (f) Bayes R2 (95% CI) for each model. 
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some indication of trends towards negative residuals for pollock pre
diction models, particularly for the larval time series, which may indi
cate a trend of worsening survival between early life stages and 
recruitment to that stock. 

We conclude that early life observations were generally useful for 
predicting recruitment in our study populations, though nonstationarity 
in predictive relationships should be regularly evaluated. We found that 
errors for predictions made without early life stage data (i.e., from his
torical spawner-recruit relationships) are strongly associated with the 
magnitude of climate anomalies acting on the system (Fig. 2a), and that 
the probability of strong climate anomalies is rapidly increasing 
(Fig. 2b). Given these trends, historical expectations concerning the 
envelope of likely variability for these stocks are becoming rapidly 

outmoded (Pershing et al., 2019; Litzow et al., 2021). These consider
ations make early information on recruitment variability especially 
valuable (Pershing et al., 2015). In particular, observations of very low 
abundance at the larval or juvenile stages appear to be a reliable indi
cator of a weak year class. Examples for pollock include 2015 and 2019 
(Fig. 4) and 2015 and 2016 for cod (Fig. 6). The extreme climate con
ditions during these years were associated with novel conditions 
affecting year-class strength – both in abiotic conditions (low salinity 
reducing pollock egg survival, high temperatures reducing cod egg 
survival), and biotic conditions (Laurel and Rogers, 2020; Laurel et al., 
2021; Rogers et al., 2021). 

The practical value of predictions from early life stage observations 
was evident during the recent marine heatwaves, when these data were 
used to provide early warning of likely recruitment failures for these 
stocks, 1–3 years before such impacts were detectable in fisheries or 
standard survey data used in stock assessments. While early life stage 
data are not routinely included in stock assessment models in the Gulf of 
Alaska, these data are increasingly used to provide supplemental in
formation for the stock assessment teams giving management advice, 
and for the managing body, the North Pacific Fisheries Management 
Council (NPFMC), which makes decisions on annual fishing quotas. In 
2019, the cod stock assessment lead identified concerns that continued 
lack of recruitment would delay recovery of the stock following the steep 
decline in 2015–2017. The management system for Pacific cod ensures 
that catch limits decrease as the population declines based on a harvest 
control rule. However, the NPFMC took extra precaution and reduced 
catch levels an additional 40%, citing concerns about a weak 2019 year 
class and the subsequent risk that the stock might fall into “overfished” 
status in 2020 or 2021. By providing rapid assessments of potential year 
class strength, early life stage surveys can thus be used to guide tactical 
fisheries management decisions, particularly during climate events that 
may be outside the range of historical variability. 

As judged by coefficient estimates, the DFA trend for pollock showed 
intermediate predictive value for pollock (slightly better than larval and 
juvenile seine prediction, worse than juvenile trawl prediction; Fig. 4). 
Larval and juvenile surveys are only conducted in odd years, so updated 
values of the DFA trend, informed by the annual seine data, may be 
useful for predicting recruitment for even-year cohorts. In contrast, ju
venile seine data were superior to the spawning habitat index and larval 
survey for predicting cod recruitment (Fig. 6), so there is no advantage 
to be gained from using the DFA trend over seine data in that case. 

Cod and pollock population trends in Alaska tend to be correlated 
over interannual to decadal time scales (Hollowed et al., 2001; Mueter 
et al., 2007), and that tendency was born out in our data - the pollock 
DFA trend and cod log seine abundance were correlated at r = 0.73. 
However, while cod and pollock are morphologically similar at early life 
stages, they show distinctive behavior and physiology that will likely 
elicit different responses to shared climate forcing. Pollock release eggs 
over the course of a spring season in the form of multiple batches from 
individual females, and pollock eggs are relatively ubiquitous in surface 
layers during ichthyoplankton spring surveys (Doyle and Mier, 2016; 
Rogers et al., 2021). In contrast, cod are single-batch spawners with 
demersal eggs that are deposited on the ocean floor. Cod year class 
strength is less likely to be impacted by variability in advection fields 
and surface temperature following spawning, but cod eggs are much 
more sensitive to warm anomalies at depth (Laurel and Rogers, 2020). 
After hatch, both Pacific cod and walleye pollock share the water col
umn as larvae (Doyle and Mier, 2016) and have similar growth response 
to temperature (Hurst et al., 2010; Laurel et al., 2016; Koenker et al., 
2018). Following the larval period, the life histories of these species 
diverge again as Pacific cod go through a transition to life on the ocean 
floor and begin a period of nearshore occupancy (‘settlement’) while 
juvenile pollock remain in the surface layers in both nearshore and 
offshore habitats (Moss et al., 2015; Laurel et al., 2016). 

As warming and other anthropogenic climate change effects move 
the Gulf of Alaska ecosystem further from the historical range of 

Fig. 5. Residual time series for Bayesian predictions of pollock stock assess
ment model recruitment estimates:(a) larval abundance, (b) seine abundance, 
(c) trawl abundance, (d) DFA trend. Residuals are posterior medians and 95% 
CIs, and fitted regressions are from Generalized Additive Models, with 95% CIs, 
calculated under the assumption that years are independent observations. 
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conditions, these differences in life history, habitat occupation and 
physiology suggest the potential for species-specific patterns of further 
nonstationarity in the predictive relationships demonstrated in this 
study. Relationships among temperature, advection, and salinity have 
changed historically in the Gulf of Alaska in ways that have apparently 
contributed to nonstationary climate-biology relationships across the 
fish and crustacean community (Litzow et al., 2018, 2019), and further 
changes to these climate relationships may have accompanied the 
extreme 2014–2019 temperature anomalies (Litzow et al., 2020). Pre
vious nonstationarity in recruitment prediction from pollock larval 
abundance (Bailey, 2000; Stige et al., 2013) is apparent in our data in a 
run of positive residuals in the 1980 s followed by more neutral residuals 
in the 1990 s (Fig. 5). However, the magnitude of those earlier residual 
trends appears to be much less than the magnitude of negative residuals 

during 2014–2019. These recent negative residuals for recruitment 
predictions from pollock larval abundance appear to signal declining 
early life stage survival in the contemporary Gulf of Alaska climate 
(Rogers et al., 2021). Residuals for cod recruitment predictions from 
larval abundance also showed a previously-unreported low-frequency 
pattern of persistently positive values in the 1980 s and negative values 
in the 1990 s and 2000 s (Fig. 7). The timing of the change in sign of 
these residuals is consistent with both a decline in temporal variance in 
the Aleutian Low, which appeared to have widespread implications for 
nonstationary regulation of Gulf of Alaska fish populations (Litzow 
et al., 2018, 2019), and also with the proposed timing of the switch in 
the primary factor regulating pollock recruitment (Bailey, 2000; Stige 
et al., 2013). The coincident change in cod residuals might imply that 
that species also saw a transition from recruitment limited by larval 

Fig. 6. Predicting cod model recruitment estimates from age-0 field observations. Bayesian regression (80 / 90 / 95% CI) of model estimates on (a) spawning habitat 
index, (b) larval abundance, (c) juvenile seine abundance, (d) DFA for all three time series. (e) Estimated regression coefficients (95% CI) for each model, (f) Bayes R2 

(95% CI) for each model. 
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mortality to recruitment limited by predation on juveniles. Such a 
transition would be consistent with the proposed transition for control of 
pollock recruitment around the same time, from environmental control 
of larval abundance to predation control of juvenile abundance (Bailey, 
2000). However, we do not have data in hand to test that hypothesis in 
the current study. Measurement error may also be an important source 
of nonstationarity in predictive relationships. Climate change effects 
phenology and growth of early life stage fishes (Laurel et al., 2021), 
which may result in an increasing disconnect between the timing of 
fixed-design surveys and the peak abundance of different life history 
stages they target. 

If projections concerning the expected rate of warming in the North 

Pacific and Gulf of Alaska are correct (Walsh et al., 2018b; Laufkötter 
et al., 2020), and given that these populations are at the southern limit of 
their range as commercially-important fisheries, the most likely pre
diction for both species in coming decades appears to be persistent 
recruitment failure and local extirpation, at least commercially. An 
important aspect of successful climate adaptation by fisheries stake
holders is the maintenance of catches from declining stocks for as long as 
possible to give time for new fisheries to be developed (Cinner et al., 
2018). Predicting recruitment to these stocks using early-life surveys 
may be particularly valuable in this context. Given the potential for 
nonstationary predictive value for individual time series, monitoring 
across multiple early life stages will likely be the most effective approach 
for developing robust predictions of year class strength as climate 
change effects on these stocks intensify. 
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